Nonlinear magneto-viscoelasticity of transversally isotropic magneto-active polymers.
نویسندگان
چکیده
Iron-filled magnetorheological polymers, when cured in the presence of a magnetic field, result in having a transversely isotropic structure with iron particles forming chains along the direction of applied magnetic induction. In this work, we model the magneto-viscoelastic deformation (and magnetization) process of such polymers. Components of the deformation gradient and the applied magnetic induction in the direction of anisotropy are considered to be additional arguments of the energy density function. The existence of internal damping mechanisms is considered by performing a multiplicative decomposition of the deformation gradient and an additive decomposition of the magnetic induction into equilibrium and non-equilibrium parts. Energy density functions and evolution laws of the internal variables are proposed that agree with the laws of thermodynamics. In the end, we present solutions of some standard deformation cases to illustrate the theory. In particular, it is shown that the orientation of resultant magnetic field and principal stress directions change with time owing to viscoelastic evolution.
منابع مشابه
magneto-viscoelasticity of transversally isotropic magneto-active polymers
Iron-filled magnetorheological polymers, when cured in the presence of a magnetic field, result in having a transversely isotropic structure with iron particles forming chains along the direction of applied magnetic induction. In this work, we model the magneto-viscoelastic deformation (and magnetization) process of such polymers. Components of the deformation gradient and the applied magnetic ...
متن کاملRate dependent finite deformation of magneto-active polymers
Magneto-active polymers (MAPs), composed of polymer matrices and magnetic filler particles, are smart materials that deform quickly in an external magnetic field. The ability to produce large deformation of MAPs makes these materials promising for actuators and sensors. Due to the viscoelasticity of the polymer matrices, MAPs usually demonstrate ratedependent dynamic properties. However, very f...
متن کاملTransversely Isotropic Magneto-Visco Thermoelastic Medium with Vacuum and without Energy Dissipation
In the present investigation the disturbances in a homogeneous transversely isotropic magneto-Visco thermoelastic rotating medium with two temperature due to thermomechanical sources has been addressed. The thermoelasticity theories developed by Green-Naghdi (Type II and Type III) both with and without energy dissipation has been applied to the thermomechanical sources. The Laplace and Fourier ...
متن کاملRayleigh Waves in a Homogeneous Magneto-Thermo Voigt-Type Viscoelastic Half-Space under Initial Surface Stresses
This paper deals with the propagation of magneto-thermo Rayleigh waves in a homogeneous viscoelastic half-space under initial stress. It has been observed that velocity of Rayleigh waves depends on viscosity, magnetic field, temperature and initial stress of the half-space. The frequency equation for Rayleigh waves under the effect of magnetic field, stress and temperature for both viscoelastic...
متن کاملAnalysis of Plane Waves in Anisotropic Magneto-Piezothermoelastic Diffusive Body with Fractional Order Derivative
In this paper the propagation of harmonic plane waves in a homogeneous anisotropic magneto-piezothermoelastic diffusive body with fractional order derivative is studied. The governing equations for a homogeneous transversely isotropic body in the context of the theory of thermoelasticity with diffusion given by Sherief et al. [1] are considered as a special case. It is found that three types of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Mathematical, physical, and engineering sciences
دوره 470 2166 شماره
صفحات -
تاریخ انتشار 2014